FINITE ELEMENT ANALYSIS FOR BIOMEDICAL ENGINEERING APPLICATIONS

Z. Yang
Finite Element Analysis for Biomedical Engineering Applications
Finite Element Analysis for Biomedical Engineering Applications

Z. Yang
Contents

Preface ... xiii
About the Author .. xv

Chapter 1 Introduction .. 1

PART I Bone
Chapter 2 Bone Structure and Material Properties 5
2.1 Bone Structure .. 5
2.2 Material Properties of Bone 7
References ... 8

Chapter 3 Simulation of Nonhomogeneous Bone 9
3.1 Building Bone Model from CT Data 9
3.1.1 CT Data .. 10
3.1.2 Finite Element Model ... 10
3.1.3 Calculation of the Average CT Number (HU) 10
3.1.4 Material Property Assignment 13
3.1.5 Discussion .. 14
3.1.6 Summary .. 14
3.2 Interpolation of Bone Material Properties 15
3.2.1 Multidimensional Interpolation 15
3.2.1.1 RBAS Algorithm .. 15
3.2.1.2 NNEI Algorithm .. 15
3.2.1.3 LMUL Algorithm .. 16
3.2.2 Interpolation of Material Properties of the Ankle 16
3.2.2.1 Defining Material Properties of Bone Using the RBAS Algorithm ... 18
3.2.2.2 Defining Material Properties of Bone Using the NNEI Algorithm ... 18
3.2.2.3 Defining Material Properties of Bone Using the LMUL Algorithm ... 18
3.2.2.4 Defining Material Properties of Bone Using a Mixed Method ... 19
3.2.3 Discussion ... 20
3.2.4 Summary .. 21
References ... 21
Chapter 4 Simulation of Anisotropic Bone .. 23
 4.1 Anisotropic Material Models .. 23
 4.2 Finite Element Model of Femur with Anisotropic Materials 25
 4.2.1 Finite Element Model of Femur with Anisotropic Materials 25
 4.2.2 Simulation of Mechanical Testing of the Femur 29
 4.2.3 Discussion ... 29
 4.2.4 Summary ... 31
References ... 31

Chapter 5 Simulation of Crack Growth Using the eXtended Finite Element Method (XFEM) .. 33
 5.1 Introduction to XFEM .. 33
 5.1.1 Singularity-Based Method .. 33
 5.1.2 Phantom-Node Method .. 34
 5.1.3 General Process for Performing XFEM Crack-Growth Simulation 35
 5.2 Simulation of Crack Growth of the Cortical Bone 35
 5.2.1 Finite Element Model .. 37
 5.2.1.1 Geometry and Mesh ... 37
 5.2.1.2 Material Properties .. 37
 5.2.1.3 Definition of Crack Front 38
 5.2.1.4 Local Coordinate Systems 38
 5.2.1.5 Loading and Boundary Conditions 39
 5.2.1.6 Solution Setting ... 39
 5.2.2 Results ... 40
 5.2.3 Discussion ... 41
 5.2.4 Summary ... 41
References ... 42

PART II Soft Tissues

Chapter 6 Structure and Material Properties of Soft Tissues 45
 6.1 Cartilage ... 45
 6.1.1 Structure of Cartilage ... 45
 6.1.2 Material Properties of Cartilage 45
 6.2 Ligaments ... 46
 6.2.1 Structure of Ligaments ... 46
 6.2.2 Material Properties of Ligaments 46
 6.3 Intervertebral Disc ... 47
References ... 48
Chapter 7 Nonlinear Behavior of Soft Tissues

7.1 Hyperelastic Models

7.2 Finite Element Analysis of the Abdominal Aortic Aneurysm Wall

7.2.1 Finite Element Model

7.2.1.1 Geometry and Mesh

7.2.1.2 Material Model

7.2.1.3 Loading and Boundary Conditions

7.2.1.4 Solution Setting

7.2.2 Results

7.2.3 Discussion

7.2.4 Summary

References

Chapter 8 Viscoelasticity of Soft Tissues

8.1 The Maxwell Model

8.2 Study of PDL Creep

8.2.1 Finite Element Model

8.2.1.1 Geometry and Mesh

8.2.1.2 Material Models

8.2.1.3 Boundary Conditions

8.2.1.4 Loading Steps

8.2.2 Results

8.2.3 Discussion

8.2.4 Summary

References

Chapter 9 Fiber Enhancement

9.1 Standard Fiber Enhancement

9.1.1 Introduction of Standard Fiber Enhancement

9.1.2 IVD Model with Fiber Enhancement

9.1.2.1 Finite Element Model of IVD

9.1.2.2 Results

9.1.2.3 Discussion

9.1.2.4 Summary

9.2 Mesh-Independent Fiber Enhancement

9.2.1 Introduction of Mesh-Independent Fiber Enhancement

9.2.2 IVD Model with Mesh-Independent Fiber Enhancement

9.2.2.1 Finite Element Model
Chapter 9
9.2 Creating the Fibers
9.2.2 Creating the Fibers................. 76
9.2.2.3 Results.......................... 78
9.2.2.4 Summary......................... 79

9.3 Material Models Including Fiber Enhancement............. 79
9.3.1 Anisotropic Material Model with Fiber Enhancement 79
9.3.2 Simulation of Anterior Cruciate Ligament (ACL) 84
9.3.2.1 Finite Element Model............ 85
9.3.2.2 Results......................... 88
9.3.2.3 Discussion..................... 88
9.3.2.4 Summary....................... 88

References...................................... 90

Chapter 10
USERMAT for Simulation of Soft Tissues 93
10.1 Introduction of Subroutine UserHyper............... 93
10.2 Simulation of AAA Using UserHyper.................. 93
10.2.1 Using Subroutine UserHyper to Simulate Soft Tissues of the Artery 93
10.2.2 Validation................................ 95
10.2.3 Study the AAA Using UserHyper............... 96
10.2.4 Discussion........................... 96
10.2.5 Summary............................ 98

References...................................... 99

Chapter 11
Modeling Soft Tissues as Porous Media 101
11.1 CPT Elements........................... 101
11.2 Study of Head Impact........................ 102
11.2.1 Finite Element Model of the Head 102
11.2.1.1 Geometry and Mesh 102
11.2.1.2 Material Properties 102
11.2.1.3 Loading and Boundary Conditions 102
11.2.2 Results................................ 105
11.2.3 Discussion........................... 108
11.2.4 Summary............................ 108
11.3 Simulation of Creep Behavior of the IVD............... 108
11.3.1 Finite Element Method.................. 108
11.3.1.1 Geometry and Mesh 108
11.3.1.2 Material Properties 108
11.3.1.3 Loading and Boundary Conditions 109
11.3.1.4 Solution Setting............... 109
PART III Joints

Chapter 12
Structure and Function of Joints

Reference

Chapter 13
Modeling Contact

13.3 2D Poroelastic Model of Knee

13.3.1 Finite Element Model

13.3.2 Results

13.3.3 Discussion

13.3.4 Summary

References

Chapter 14
Application of the Discrete Element Method for Study of the Knee Joint

14.1 Introduction of Discrete Element Method

14.2 Finite Element Model

14.2.1 Line-Plane Intersection

14.2.2 Building Springs

14.2.3 Boundary Conditions
14.2.4 Results .. 145
14.2.5 Discussion 146
14.2.6 Summary 147

References .. 147

PART IV Simulation of Implants

Chapter 15 Study of Contact in Ankle Replacement 151
15.1 Finite Element Model 151
15.1.1 Geometry and Mesh 151
15.1.2 Material Properties 151
15.1.3 Contact Definition 153
15.1.4 Loading and Boundary Conditions 153
15.2 Results .. 154
15.3 Discussion 155
15.4 Summary ... 156

References .. 156

Chapter 16 Simulation of Shape Memory Alloy (SMA)
Cardiovascular Stent 157
16.1 SMA Models 157
16.1.1 SMA Model for Superelasticity 157
16.1.2 SMA Model with Shape Memory Effort 160
16.2 Simulation of Angioplasty with Vascular Stenting 161
16.2.1 Finite Element Model 161
16.2.1.1 Geometry and Mesh 162
16.2.1.2 Material Properties 163
16.2.1.3 Contact Pairs 164
16.2.1.4 Solution Setting 165
16.2.2 Results 166
16.2.3 Discussion 166
16.2.4 Summary 167

References .. 167

Chapter 17 Wear Model of Liner in Hip Replacement 169
17.1 Wear Simulation 169
17.1.1 Archard Wear Model 169
17.1.2 Improving Mesh Quality during Wear 169
17.2 Simulating Wear of Liner in Hip Replacement 170
17.2.1 Finite Element Method 170
17.2.1.1 Geometry and Mesh 170
Chapter 18 Fatigue Analysis of a Mini Dental Implant (MDI)

18.1 SMART Crack-Growth Technology
18.2 Study of Fatigue Life of an MDI
18.2.1 Finite Element Model
18.2.1.1 Geometry and Mesh
18.2.1.2 Material Properties
18.2.1.3 Loading and Boundary Conditions
18.2.1.4 Setting up Fracture Calculation
18.2.2 Results
18.2.3 Discussion
18.2.4 Summary

References

PART V Retrospective

Chapter 19 Retrospective

19.1 Principles for Modeling Biology
19.2 Meshing Sensitivity
19.3 Units
19.4 Workbench
19.5 ANSYS Versions

Appendix 1: Input File of the Multidimensional Interpolation in Section 3.2.2

Appendix 2: Input File of the Anisotropic Femur Model in Section 4.2

Appendix 3: Input File of the XFEM Crack-Growth Model in Section 5.2
Appendix 4: Input File of the Abdominal Aortic Aneurysm Model
in Section 7.2 ... 213

Appendix 5: Input File of the Periodontal Ligament Creep Model
in Section 8.2 ... 217

Appendix 6: Input File of the Intervertebral Disc Model with Fiber
Enhancement in Section 9.1.2 ... 221

Appendix 7: Input File of the Intervertebral Disc Model with Mesh
Independent Fiber Enhancement in Section 9.2.2 229

Appendix 8: Input File of the Anterior Cruciate Ligament Model
in Section 9.3.2 ... 235

Appendix 9: Input File of Subroutine UserHyper in Section 10.2 239

Appendix 10: Input File of the Head Impact Model in Section 11.2 243

Appendix 11: Input File of the Intervertebral Disc Model in Section 11.3 245

Appendix 12: Input File of the Knee Contact Model in Section 13.2 249

Appendix 13: Input File of the 2D Axisymmetrical Poroelastic Knee
Model in Section 13.3 .. 259

Appendix 14: Input File of the Discrete Element Model of Knee Joint
in Chapter 14 .. 265

Appendix 15: Input File of the Material Definition of the Cancellous Bone
in Chapter 15 .. 273

Appendix 16: Input File of the Stent Implantation Model in Chapter 16 281

Appendix 17: Input File of the Wear Model of Hip Replacement
in Chapter 17 .. 289

Appendix 18: Input File of the Mini Dental Implant Crack-Growth Model
in Chapter 18 .. 293

Index ... 299
Preface

In 2001, I came to the University of Pittsburgh to pursue my PhD. As I learned about biomechanics, I became fascinated by the complications of biology. In the past 17 years, I had been working on many bioengineering projects with professors from the University of Pittsburgh, University of Pennsylvania, Allegheny General Hospital, and Soochow University. My long-time research has given me experience in finite element modeling in the field of biomedical studies. I have chosen to record my experiences in a book which, I hope, will encourage medical researchers to do further investigations. Yet, even after 17 years of study and research, I recognize that I still have more to learn about biomechanics. Should this book, therefore, contain errors, I ask readers to point them out to me so that I can address and correct them.

While I wrote this book, I received help and encouragement from many of my friends, including Frank Marx, Dr. J.S. Lin, Dr. Richard Debski, and Fayan Xu. Dr. Zhi-Hong Mao reviewed the whole manuscript. I am grateful for his constructive comments that have greatly improved the quality of the book. I give a special thanks to Ronna Edelstein for her time and effort in revising my manuscript. I express my great appreciation to the staff at CRC Press, especially Marc Gutierrez and Kari Budyk for their assistance in publishing the book. Finally, I thank my family, especially my wife, Peng, and my two children, for their constant support.
About the Author

Z. Yang earned a PhD in mechanical engineering at the University of Pittsburgh in 2004. Over the last 17 years, he has collaborated with professors from various colleges, such as the University of Pennsylvania and University of Pittsburgh, and finished a number of biomedical projects. Currently, he is a senior software engineer in the field of finite element analysis with over 10 years’ experience.
1 Introduction

Because people are living longer in today’s world, more individuals are dealing with a variety of diseases. Some common diseases are associated with the mechanical states of human organs. For example, hips often break when older people fall, and the lumbar disc degenerates due to excessive loadings over the long term. An abdominal aortic aneurysm (AAA) occurs when the stresses of the AAA wall exceed the strength of the wall tissue. Treatment of these diseases requires an understanding of the stress-states of relevant parts under various conditions. When some parts of the human body degenerate and lose their function, people may have to undergo implant surgeries, such as stent implantation for treatment of atherosclerosis and total knee replacement to regain the walking function. Although these implants can improve the person’s quality of life significantly, they can also raise other issues, such as medial tilting in ankle replacements and fatigue and wear of the liner in hip implants. To solve these issues and improve the medical designs, it is vital to study the mechanical behavior of the implants.

While researchers are testing the mechanical responses of the organs and the implants in the lab, they also emphasize numerical simulations, especially finite element analysis. Since the 1970s, some well-known commercial finite element codes, such as ANSYS, NASTRAN, MARC, ABAQUS, LSDYNA, and COMSOL, have been developed to solve the structural problems. Among them, ANSYS software has the most powerful nonlinear solver, and hence it has become the most widely used software in both academia and industry. Over the past decade, many advanced finite element technologies have been developed in ANSYS. The purpose of this book is to simulate some common medical problems using finite element advanced technologies, which paves a path for medical researchers to perform further studies.

The book consists of four main parts. Each part begins by presenting the structure and function of the biology, and then it introduces the corresponding ANSYS advanced features. The final discussion highlights some specific biomedical problems simulated by ANSYS advanced features.

The topic of Part I is bone. After this introductory chapter, Chapter 2 introduces the structure and material properties of bone. Chapter 3 discusses the nonhomogeneous character of bone, including modeling it by computed tomography (CT) in Section 3.1 and by multidimensional interpolation in Section 3.2. Chapter 4 describes how to build a finite element model of anisotropic bone, and the crack-growth in the microstructure of cortical bone is simulated by eXtended Finite Element Model (XFEM) in Chapter 5.

Part II, which deals with soft tissues, is very detailed. Chapter 6 introduces the structure and material properties of soft tissues like cartilage, ligament, and intervertebral discs (IVDs). Next, Chapter 7 presents the nonlinear behavior of soft tissues and simulation of AAA in ANSYS190. Chapter 8 examines the viscoelasticity of soft tissues, including its application to the study of periodontal ligament creep.
Some soft tissues are enhanced by fibers. Chapter 9 discusses three approaches of fiber enhancement in ANSYS190: (1) standard mesh-dependent fiber enhancement, in which the fibers are created within the regular base mesh; (2) mesh-independent fiber enhancement that creates fibers independent of the base mesh; and (3) the anisotropic material model with fiber enhancement. The first two approaches are utilized to simulate the fibers in the annulus of the intervertebral disc (IVD).

Many nonlinear material models in ANSYS are available for the simulation of soft tissues. If the experimental data of one biological material do not fit any of these models, the researchers may turn to USERMAT in ANSYS. Chapter 10 focuses on the topic of how to develop user material models in ANSYS.

The soft tissues are biphasic, consisting of 30%–70% water. Chapter 11 introduces ways of modeling soft tissues as porous media and the application of biphasic modeling in head impact and IVD creep research.

Part III describes joint simulation. After briefly introducing the structure of joints in Chapter 12, in the next chapter, Section 13.1 defines three contact types in a whole-knee simulation, and a two-dimensional (2D) axisymmetrical poroelastic knee model is built in Section 13.2. Then, the discrete element method of knee joint that is implemented in ANSYS is analyzed in Chapter 14.

Part IV presents a number of implant simulations. Chapter 15 studies the contact of the talar component and the bone to investigate medial tilting in ankle replacement. The stent implantation is simulated in Chapter 16 using the shape memory alloy super-elasticity model. The Archard wear model is applied to study the wear of the hip implant in Chapter 17. Chapter 18 predicts the fatigue life of a mini-dental implant using ANSYS SMART technology.

Chapter 19 presents a retrospective look at the entire content of the book. Some guidelines are summarized for the simulation of biomedical problems.

The biomedical problems in this book have been simulated using ANSYS Parametric Design Language (APDL). Reading this book requires knowledge of APDL. To learn APDL, I suggest first reading the ANSYS help documentation and then practice some technical demonstration problems available in this documentation. All APDL input files of the finite element models in the book are provided in the appendixes.